1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
//! # Description
//!
//! Implement the `myAtoi(string s)` function, which converts a string to a
//! 32-bit signed integer (similar to C/C++'s `atoi` function).
//!
//! The algorithm for `myAtoi(string s)` is as follows:
//!
//! Read in and ignore any leading whitespace.
//!
//! Check if the next character (if not already at the end of the string) is
//! '`-`' or '`+`'. Read this character in if it is either. This determines if the
//! final result is negative or positive respectively. Assume the result is
//! positive if neither is present.
//!
//! Read in next the characters until the next non-digit character or the end
//! of the input is reached. The rest of the string is ignored.
//!
//! Convert these digits into an integer (i.e. "123" -> 123, "0032" -> 32). If
//! no digits were read, then the integer is `0`. Change the sign as necessary
//! (from step 2).
//!
//! If the integer is out of the 32-bit signed integer range
//! $[-2^{31}, 2^{31} - 1]$, then clamp the integer so that it remains in the
//! range. Specifically, integers less than $-2^{31}$ should be clamped to
//! $-2^{31}$, and integers greater than $2^{31} - 1$ should be clamped to
//! $2^{31} - 1$.
//!
//! Return the integer as the final result.
//!
//! Note:
//!
//! Only the space character '` `' is considered a whitespace character.
//! Do not ignore any characters other than the leading whitespace or the rest
//! of the string after the digits.
//!
//!
//! Example 1:
//! ```plain
//! Input: s = "42"
//! Output: 42
//! Explanation: The underlined characters are what is read in, the caret is the
//! current reader position.
//! Step 1: "42" (no characters read because there is no leading whitespace)
//! ^
//! Step 2: "42" (no characters read because there is neither a '-' nor '+')
//! ^
//! Step 3: "42" ("42" is read in)
//! ^
//! The parsed integer is 42.
//! Since 42 is in the range $[-2^{31}, 2^{31} - 1]$, the final result is 42.
//! ```
//!
//! Example 2:
//! ```plain
//! Input: s = " -42"
//! Output: -42
//! Explanation:
//! Step 1: " -42" (leading whitespace is read and ignored)
//! ^
//! Step 2: " -42" ('-' is read, so the result should be negative)
//! ^
//! Step 3: " -42" ("42" is read in)
//! ^
//! The parsed integer is -42.
//! Since -42 is in the range $[-2^{31}, 2^{31} - 1]$, the final result is -42.
//! ```
//!
//! Example 3:
//! ```plain
//! Input: s = "4193 with words"
//! Output: 4193
//! Explanation:
//! Step 1: "4193 with words" (no characters read because there is no leading whitespace)
//! ^
//! Step 2: "4193 with words" (no characters read because there is neither a '-' nor '+')
//! ^
//! Step 3: "4193 with words" ("4193" is read in; reading stops because the next character is a non-digit)
//! ^
//! The parsed integer is 4193.
//! Since 4193 is in the range $[-2^{31}, 2^{31} - 1]$, the final result is 4193.
//! ```
//!
//! Constraints:
//!
//! - `0 $\leqslant$ s.length $\leqslant$ 200`
//! - `s` consists of English letters (lower-case and upper-case), digits
//! (`0-9`), '` `', '`+`', '`-`', and '`.`'.
//!
//! Source: <https://leetcode.com/problems/string-to-integer-atoi/>
////////////////////////////////////////////////////////////////////////////////
/// Convert string to 32-bit integer
///
/// # Arguments
/// * `s` - input string
///
/// # Examples
/// ```
/// use leetcode_rust::problems::p000_0xx::p000_008::my_atoi;
///
/// assert!(my_atoi(String::from("-12.5")) == -12);
/// ```
pub fn my_atoi(s: String) -> i32 {
// Upper bound for possitive i32. The last element should be increased
// if given string indicates a negative i32 (no sign symbol included).
let mut threshold_val: [u8; 10] = [50, 49, 52, 55, 52, 56, 51, 54, 52, 55];
// Indicates whether the given string starts with a negative integer.
let mut is_negative = false;
// Indicates existence of digits in given string.
let mut has_digits = false;
// Current index position during scanning of input string.
let mut curr_idx: usize = 0;
// Indicates whether scanned part should be treated as an integer.
let mut is_started = false;
// Temp value during looping and return value after looping complete.
let mut val: i32 = 0;
// Bytes form of input string. For faster comparison and computation.
let s_bytes = s.as_bytes();
// Indicates whether the scanned part correspond to an overflowed interger.
let mut is_overflow = false;
// In some cases, we should just ignore overflow detection because the
// parsed digits are simply less than same digit in possitive / negative
// overflow threshold value respectively.
let mut is_overflow_ignored = false;
// Used to check if given string starts with exactly same digits comparing
// with threshold.
let mut is_full_match = true;
// A vector containing all parsed and valid digits.
let mut val_vec: Vec<u8> = vec![];
// Loop forever.
// Looping through all characters in sequence or escape during looping are
// controlled by additional flags.
loop {
// Guard condition, exit looping when no more characters to check.
if curr_idx == s_bytes.len() {
break;
}
if s_bytes[curr_idx] == 32 {
// This is a whitespace character, check its position.
if !is_started {
// Leading whitespace, ignore it
curr_idx += 1;
continue;
} else {
// None leading whitespace, end of reading because we already
// found some significant digits.
break;
}
}
if [43u8, 45u8].contains(&s_bytes[curr_idx]) {
// Check positive and negative signs.
if has_digits {
// Signs after digits (even after 0 is not allowed)
// e.g. `12-222`, `0+123`
break;
}
if !is_started {
// Should only adjust sign when this is the very first valid
// symbol in the given string.
if s_bytes[curr_idx] == 45 {
// Adjust flag and set new overflow threshold.
is_negative = true;
threshold_val = [50, 49, 52, 55, 52, 56, 51, 54, 52, 56];
}
// Setup flag to avoid `-+` sequences.
is_started = true;
curr_idx += 1;
continue;
}
}
// Now parse digit and detect overflow.
if 48 <= s_bytes[curr_idx] && s_bytes[curr_idx] <= 57 {
// Once a new digit found, update related flags to avoid malformed
// sequences like: `0 123` and `123-6`.
has_digits = true;
is_started = true;
if val == 0 && s_bytes[curr_idx] == 48 {
// Skip leading zeros.
curr_idx += 1;
continue;
}
// Digits
if val_vec.len() >= threshold_val.len() - 1 {
// Only check overflow when parsed digits are the same or 1
// digit shorter than threshold. Otherwise it could waste
// execution time.
// The following traversal checks:
// 1. if parsed part has exact same digits as threshold;
// 2. if parsed part should be ignored in future checking.
for idx in 0..val_vec.len() {
if !is_overflow {
// Save time
if !is_overflow_ignored && val_vec[idx] > threshold_val[idx] {
// One digit is greater than threshold, no need to
// check later ones.
is_overflow = true;
is_full_match = false;
break;
} else if val_vec[idx] < threshold_val[idx] {
// One digit is smaller than threshold, means as
// long as its shorter than threshold, it cannot
// overflow.
// But it still needs testing for its length
// in a later step.
is_full_match = false;
is_overflow_ignored = true;
}
}
}
if !is_overflow {
// Test for current digit:
// 1. if it extends length of parsed number that causes
// overflow.
// 2. if it increases parsed number that causes overflow.
if val_vec.len() == threshold_val.len() - 1 {
// Check if adding this digit causes overflow
if is_full_match
&& s_bytes[curr_idx] > threshold_val[threshold_val.len() - 1]
{
is_overflow = true;
break;
}
} else if val_vec.len() == threshold_val.len() {
// Check if extending parsed part causes overflow.
is_overflow = true;
break;
}
}
}
if is_overflow {
// Do NOT prepend current digit to parsed number.
break;
}
val = val * 10 + (s_bytes[curr_idx] - 48) as i32;
val_vec.push(s_bytes[curr_idx]);
curr_idx += 1;
continue;
}
break;
}
// The following steps simply determines what value to return by
// overflowing flag and integer sign.
if is_overflow {
if is_negative {
-2147483648
} else {
2147483647
}
} else {
if is_negative {
-val
} else {
val
}
}
}