1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
//! # Description
//!
//! Implement the `myAtoi(string s)` function, which converts a string to a
//! 32-bit signed integer (similar to C/C++'s `atoi` function).
//!
//! The algorithm for `myAtoi(string s)` is as follows:
//!
//! Read in and ignore any leading whitespace.
//!
//! Check if the next character (if not already at the end of the string) is
//! '`-`' or '`+`'. Read this character in if it is either. This determines if the
//! final result is negative or positive respectively. Assume the result is
//! positive if neither is present.
//!
//! Read in next the characters until the next non-digit character or the end
//! of the input is reached. The rest of the string is ignored.
//! 
//! Convert these digits into an integer (i.e. "123" -> 123, "0032" -> 32). If
//! no digits were read, then the integer is `0`. Change the sign as necessary
//! (from step 2).
//!
//! If the integer is out of the 32-bit signed integer range 
//! $[-2^{31}, 2^{31} - 1]$, then clamp the integer so that it remains in the 
//! range. Specifically, integers less than $-2^{31}$ should be clamped to 
//! $-2^{31}$, and integers greater than $2^{31} - 1$ should be clamped to 
//! $2^{31} - 1$.
//! 
//! Return the integer as the final result.
//! 
//! Note:
//!
//! Only the space character '` `' is considered a whitespace character.
//! Do not ignore any characters other than the leading whitespace or the rest
//! of the string after the digits.
//!  
//!
//! Example 1:
//! ```plain
//! Input: s = "42"
//! Output: 42
//! Explanation: The underlined characters are what is read in, the caret is the
//! current reader position.
//! Step 1: "42" (no characters read because there is no leading whitespace)
//!          ^
//! Step 2: "42" (no characters read because there is neither a '-' nor '+')
//!          ^
//! Step 3: "42" ("42" is read in)
//!            ^
//! The parsed integer is 42.
//! Since 42 is in the range $[-2^{31}, 2^{31} - 1]$, the final result is 42.
//! ```
//!
//! Example 2:
//! ```plain
//! Input: s = "   -42"
//! Output: -42
//! Explanation:
//! Step 1: "   -42" (leading whitespace is read and ignored)
//!             ^
//! Step 2: "   -42" ('-' is read, so the result should be negative)
//!              ^
//! Step 3: "   -42" ("42" is read in)
//!                ^
//! The parsed integer is -42.
//! Since -42 is in the range $[-2^{31}, 2^{31} - 1]$, the final result is -42.
//! ```
//!
//! Example 3:
//! ```plain
//! Input: s = "4193 with words"
//! Output: 4193
//! Explanation:
//! Step 1: "4193 with words" (no characters read because there is no leading whitespace)
//!          ^
//! Step 2: "4193 with words" (no characters read because there is neither a '-' nor '+')
//!          ^
//! Step 3: "4193 with words" ("4193" is read in; reading stops because the next character is a non-digit)
//!              ^
//! The parsed integer is 4193.
//! Since 4193 is in the range $[-2^{31}, 2^{31} - 1]$, the final result is 4193.
//! ```
//!
//! Constraints:
//!
//! - `0 $\leqslant$ s.length $\leqslant$ 200`
//! - `s` consists of English letters (lower-case and upper-case), digits 
//! (`0-9`), '` `', '`+`', '`-`', and '`.`'.
//! 
//! Source: <https://leetcode.com/problems/string-to-integer-atoi/>

////////////////////////////////////////////////////////////////////////////////

/// Convert string to 32-bit integer
///
/// # Arguments
/// * `s` - input string
/// 
/// # Examples
/// ```
/// use leetcode_rust::problems::p000_0xx::p000_008::my_atoi;
/// 
/// assert!(my_atoi(String::from("-12.5")) == -12);
/// ```
pub fn my_atoi(s: String) -> i32 {
    // Upper bound for possitive i32. The last element should be increased
    // if given string indicates a negative i32 (no sign symbol included).
    let mut threshold_val: [u8; 10] = [50, 49, 52, 55, 52, 56, 51, 54, 52, 55];

    // Indicates whether the given string starts with a negative integer.
    let mut is_negative = false;

    // Indicates existence of digits in given string.
    let mut has_digits = false;

    // Current index position during scanning of input string.
    let mut curr_idx: usize = 0;

    // Indicates whether scanned part should be treated as an integer.
    let mut is_started = false;

    // Temp value during looping and return value after looping complete.
    let mut val: i32 = 0;

    // Bytes form of input string. For faster comparison and computation.
    let s_bytes = s.as_bytes();

    // Indicates whether the scanned part correspond to an overflowed interger.
    let mut is_overflow = false;

    // In some cases, we should just ignore overflow detection because the
    // parsed digits are simply less than same digit in possitive / negative
    // overflow threshold value respectively.
    let mut is_overflow_ignored = false;

    // Used to check if given string starts with exactly same digits comparing
    // with threshold.
    let mut is_full_match = true;

    // A vector containing all parsed and valid digits.
    let mut val_vec: Vec<u8> = vec![];

    // Loop forever.
    // Looping through all characters in sequence or escape during looping are
    // controlled by additional flags.
    loop {
        // Guard condition, exit looping when no more characters to check.
        if curr_idx == s_bytes.len() {
            break;
        }

        if s_bytes[curr_idx] == 32 {
            // This is a whitespace character, check its position.
            if !is_started {
                // Leading whitespace, ignore it
                curr_idx += 1;
                continue;
            } else {
                // None leading whitespace, end of reading because we already
                // found some significant digits.
                break;
            }
        }

        if [43u8, 45u8].contains(&s_bytes[curr_idx]) {
            // Check positive and negative signs.
            if has_digits {
                // Signs after digits (even after 0 is not allowed)
                // e.g. `12-222`, `0+123`
                break;
            }
            if !is_started {
                // Should only adjust sign when this is the very first valid
                // symbol in the given string.
                if s_bytes[curr_idx] == 45 {
                    // Adjust flag and set new overflow threshold.
                    is_negative = true;
                    threshold_val = [50, 49, 52, 55, 52, 56, 51, 54, 52, 56];
                }
                // Setup flag to avoid `-+` sequences.
                is_started = true;
                curr_idx += 1;
                continue;
            }
        }

        // Now parse digit and detect overflow.
        if 48 <= s_bytes[curr_idx] && s_bytes[curr_idx] <= 57 {
            // Once a new digit found, update related flags to avoid malformed
            // sequences like: `0 123` and `123-6`.
            has_digits = true;
            is_started = true;

            if val == 0 && s_bytes[curr_idx] == 48 {
                // Skip leading zeros.
                curr_idx += 1;
                continue;
            }

            // Digits
            if val_vec.len() >= threshold_val.len() - 1 {
                // Only check overflow when parsed digits are the same or 1
                // digit shorter than threshold. Otherwise it could waste
                // execution time.

                // The following traversal checks:
                // 1. if parsed part has exact same digits as threshold;
                // 2. if parsed part should be ignored in future checking.
                for idx in 0..val_vec.len() {
                    if !is_overflow {
                        // Save time
                        if !is_overflow_ignored && val_vec[idx] > threshold_val[idx] {
                            // One digit is greater than threshold, no need to
                            // check later ones.
                            is_overflow = true;
                            is_full_match = false;
                            break;
                        } else if val_vec[idx] < threshold_val[idx] {
                            // One digit is smaller than threshold, means as
                            // long as its shorter than threshold, it cannot
                            // overflow.
                            // But it still needs testing for its length
                            // in a later step.
                            is_full_match = false;
                            is_overflow_ignored = true;
                        }
                    }
                }

                if !is_overflow {
                    // Test for current digit:
                    // 1. if it extends length of parsed number that causes
                    // overflow.
                    // 2. if it increases parsed number that causes overflow.
                    if val_vec.len() == threshold_val.len() - 1 {
                        // Check if adding this digit causes overflow
                        if is_full_match
                            && s_bytes[curr_idx] > threshold_val[threshold_val.len() - 1]
                        {
                            is_overflow = true;
                            break;
                        }
                    } else if val_vec.len() == threshold_val.len() {
                        // Check if extending parsed part causes overflow.
                        is_overflow = true;
                        break;
                    }
                }
            }
            if is_overflow {
                // Do NOT prepend current digit to parsed number.
                break;
            }
            val = val * 10 + (s_bytes[curr_idx] - 48) as i32;
            val_vec.push(s_bytes[curr_idx]);
            curr_idx += 1;
            continue;
        }

        break;
    }
    // The following steps simply determines what value to return by
    // overflowing flag and integer sign.
    if is_overflow {
        if is_negative {
            -2147483648
        } else {
            2147483647
        }
    } else {
        if is_negative {
            -val
        } else {
            val
        }
    }
}