1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
//! # Description
//!
//! Given an integer array `nums`, return all the triplets `[nums[i], nums[j],
//! nums[k]]` such that `i != j`, `i != k`, and `j != k`, and `nums[i] + nums[j] + nums[k] == 0`.
//!
//! Notice that the solution set must not contain duplicate triplets.
//!
//! Example 1:
//!
//! ```plain
//! Input: nums = [-1,0,1,2,-1,-4]
//! Output: [[-1,-1,2],[-1,0,1]]
//! Explanation:
//! nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0.
//! nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0.
//! nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0.
//! The distinct triplets are [-1,0,1] and [-1,-1,2].
//! Notice that the order of the output and the order of the triplets does not matter.
//! ```
//!
//! Example 2:
//!
//! ```plain
//! Input: nums = [0,1,1]
//! Output: []
//! Explanation: The only possible triplet does not sum up to 0.
//! ```
//!
//! Example 3:
//!
//! ```plain
//! Input: nums = [0,0,0]
//! Output: [[0,0,0]]
//! Explanation: The only possible triplet sums up to 0.
//! ```
//!
//! Constraints:
//!
//! - `3 $\leqslant$ nums.length $\leqslant$ 3000`
//! - `-105 $\leqslant$ nums[i] $\leqslant$ 105`
//!
//! Sources: <https://leetcode.com/problems/3sum/>
////////////////////////////////////////////////////////////////////////////////
/// 3Sum
///
/// # Arguments
/// * `nums` - input number pairs
pub fn three_sum(nums: Vec<i32>) -> Vec<Vec<i32>> {
algorithm_2(nums)
}
/// Personal implementation
///
/// # Arguments
/// * `nums` - input numbers to check for triplets.
fn algorithm_2(nums: Vec<i32>) -> Vec<Vec<i32>> {
let mut res: Vec<Vec<i32>> = vec![];
if nums.len() >= 3 {
let mut sorted_nums = nums.clone();
sorted_nums.sort();
let mut i = 0;
while i < sorted_nums.len() - 1 {
let a = sorted_nums[i];
if i > 0 && sorted_nums[i - 1] == sorted_nums[i] {
i += 1;
continue;
}
let mut j = i + 1;
while j < sorted_nums.len() - 1 {
let b = sorted_nums[j];
if a + b > 0 {
break;
}
if i + 1 < j && b == sorted_nums[j - 1] {
// Already searched last time, continue
j += 1;
continue;
}
let mut start = 0;
let mut end = sorted_nums[(j + 1)..].len() - 1;
while start < end {
let middle = (end + start) / 2;
if sorted_nums[(j + 1)..][middle] < -a - b {
start = middle + 1;
} else {
end = middle;
}
}
let k = j + 1 + start;
let c = sorted_nums[k];
if a + b + c == 0 {
res.push(vec![a, b, c]);
}
j += 1;
}
i += 1;
}
}
res
}
/// Sample algorithm implementation from LeetCode (fastest)
///
/// # Arguments
/// * `nums` - input numbers to check for triplets.
#[allow(dead_code)]
pub fn algorithm_1(mut nums: Vec<i32>) -> Vec<Vec<i32>> {
let mut res = vec![];
let len = nums.len();
nums.sort_unstable();
for i in 0..len {
let left = nums[i];
if i > 0 && nums[i - 1] == left {
continue;
}
let mut middle = i + 1;
let mut right = len - 1;
while middle < right {
let curr_sum = left + nums[middle] + nums[right];
if curr_sum == 0 {
res.push(vec![left, nums[middle], nums[right]]);
middle += 1;
while middle < right && nums[middle - 1] == nums[middle] {
middle += 1;
}
right -= 1;
} else if curr_sum < 0 {
middle += 1;
} else {
right -= 1;
}
}
}
res
}
#[cfg(test)]
mod tests {
use super::three_sum;
#[test]
fn test_three_sum() {
assert_eq!(
vec![vec![-1, -1, 2], vec![-1, 0, 1]],
three_sum(vec![-1, 0, 1, 2, -1, -4])
);
assert_eq!(Vec::<Vec<i32>>::from(vec![]), three_sum(vec![0, 1, 1]));
assert_eq!(vec![vec![0, 0, 0]], three_sum(vec![0, 0, 0]));
assert_eq!(vec![vec![0, 0, 0]], three_sum(vec![0, 0, 0, 0]));
}
}